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A Numerical Study of the Spatial Stability of Three-Dimensional 
Developing Plane Mixing Layer 

Taewon Seo* 
(Received October 30, 1996) 

This paper is concerned with the hydrodynamic stability of the free shear layer. The concern 

of this study lies in obtaining solutions for the viscous spatially three-dimensional stability 

corresponding to the classical self-similar velocity profile of  the free shear layer. In this study 

several techniques are applied to resolve the serious numerical complication introduced by the 

finite domain and parasitic contamination of the solution. As the spanwise wave number 

decreases, the neutral stability occurs at higher frequencies, ft. The maximum amplification rate 

(--~imax) increases when spanwise wave number decreases. The decrease of aimax with ?" at 

a fixed Reynolds number is quite linear with the exception of low spanwise wave number (7<-- 

0.2). 
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Nomenc la ture  

C1,2,3 : The complex coefficients at - c o  

c : The phase velocity 

D~,2,3 : The complex coefficients at co 

/5 : Large-scale coherent structure of 

pressure 

15 : Eigenfunction of pressure 

R : Velocity ratio 

Re : Reynolds number 

t : Time 

U ~  : Free stream velocities 

u, v,w : Large-scale coherent structures in 

the coordinate system 

u , v , w  : Eigenfunctions in the coordinate 

system 

", ~5", zU' : Second derivative of Eigenfimctions 

with respective to z; 

•701,--2,.-3 
g10,2,3 

a' 

: Asymptotic solution at - c o  

: Asymptotic solution at co 

: Complexwavenumber (Eigenvalues 

of linear stability problem) 

: Frequency parameter 

: Spanwise wave number 

: Maximum slope thickness ( I /2  of 
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vorticity thickness) 

: The stretched coordinate 

I. I n t r o d u c t i o n  

This paper is concerned with the hydrodynamic 

stability of the free shear layer. The development 

of mixing layer downstream of splitter plate is 

initially dominated by a linear stability mecha- 

nism. The schematic diagram of the flow for a 

spatially developing shear layer is sketched in 

Fig. 1. Intensive mixing occurs in the velocity 

gradient region between two free streams and 

such layers are often referred to as mixing layers. 

Shear layers are of practical importance in many 

fields where rapid transition to turbulence is 

desirable in order to prevent boundary layer 

separation or to promote rapid mixing. 

A great deal of work has been done on 

hydrodynamic stability of parallel flows such as 

the free shear layer (kin  1955; Betchov & 

Criminale 1967; Drazin & Reid 1982). Stability 

calculations for free shear layer by Lessen & Ko 

(1966) and Esch (1958) have in fac~ shown that 

for large Reynolds number the neutral curve 

approaches asymptotically the neutral value 
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Fig. 1 Schematic diagram of a developing mixing 
layer 

predicted by inviscid theory. The same result was 

obtained by Tatsumi & Kakutani (1958). Mi- 

chalke (1965, 1968) has studied both two-  and 

three-dimensional  inviscid problem while Monk- 

ewitz & Huerre (1982) have provided inviscid 

solutions for different velocity profiles. Morris 

(1976) studied the stability of three axisymmetric 

jet profiles, and Lee (1988) investigated the 

eigenvalues and eigenfunctions of the stability for 

round jet. Recently, Seo (1995) formulated the 

linear stability problem for two-dimensional  

shear flow with a two-direct ional  matching 

method. 

In this study the linear stability of three-dimen- 

sional viscous shear layer is formulated, and the 

numerical investigation of the spatial stability of 

three-dimensional  modes in a developing mixing 

layer is presented�9 A parametric study on the 

unstable mode characteristics to investigate the 

effects of the spanwise wave number and the 

Reynolds number is carried out. 

2. Governing Equations 

The problem is considered the three-dimen- 

sional shear flow of an incompressible viscous 

fluid and is assumed that the unperturbed flow 

has a sole mean velocity component parallel to 

the streamwise axis. The profile of the mean flow 

streamwise velocity component will be assumed 

to have the shape of a hyperbolic tangent func- 

tion. This profile has been verified experimentally 

(Wygnanski & Fiedler 1970; Ho & Huang 1982) 

and used by many researchers (Kelly 1967; 

Monkewits & Huerre 1982; Niki topoulos & Liu 

1987). The local Reynolds number is defined as 

Re  = Uc~, where c~ is the local half maximum 
/) 

slope thickness of the shear layer. 

For  the spatial linear stability problem, we can 

a s s u m e  

~(x, ~,z, t)=~(7)e~x-~cos(Tz) (I)  
~(x,~,z, l)=~(~)e~-et)cos(Tz) (2) 

l~(x, ~,z, t)=lS(~)e'~-mcos(Tz) (3) 

and 

#(x, 7, z,  t) =ff:(O)e'~-msin(Tz) (4) 
where /~ is the real frequency equal to ac.  The 

imaginary part of the wave number a(a=a, 
+iai) determines the stability of the flow; the 

flow is stable if a~ has positive value, neutral if af 

is equal to zero, and unstable if a, has a negative 

value. 

When we substitute Eqs. ( 1 ) ~  (4) into the 

Navier-Stokes equations and linearize, we will 

get 

iag+~+iTY:=O (5) 

ia( U - ~ )  g + ~ - g  + ia]~ 

Re ( rig) (6) 

flaa d/5_ 1 ( z T " - ~ )  (7) ia( U -  ) ~ ~ d~ Re 
�9 1 v y  ia(U-~) f f '+ n 'P:R~ - (~"-  if:) (8) 

where a ,z=aT+ 7 2, 

If we are considering a two-dimensional  distur- 

bance ( 7 = 0 ) ,  these Eqs. ( 5 ) - - ( 8 )  can be com- 

bined into one fourth-order  ordinary differential 

equation for one unknown function which is the 

well known Orr-Sommerfeld equation. For  the 

general three-dimensional  disturbance the gov- 

erning Eqs. ( 5 ) - - (8 )  constitute a s ixth-order 

system for the variables ~,  ~ ' ,  F, /5, ~ ,  if/ and 

the corresponding boundary conditions are; 

at ~ - - * + c o "  u,  v,  15, ~ - - * 0  (9) 

For  the spatial problem, the system of  ordinary 

differential Eqs. ( 5 ) - - (8 )  together with the 

boundary conditions given by Eq. (9) poses an 
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eigenvalue problem with a as the complex 

eigenvalue, u,  v, /5 and zb as eigenfunctions, and 

fl, 7 and Re as the real parameters. 

_ d72, _ dz? If we define D z ~ = ~ -  D ~ = ~ -  and the 

dependent variable vector ff as 

Dz~ 

V -  

\ D ~ /  

then the Eqs. ( 5 ) -  (8) can be written as 

tiT2 - M P  
d~ 

where M is 6 •  matrix 

0 1 0 0 0 

22 0 Re dU iaRe 0 
d72 

ia 0 0 0 - i7 
M =  

ia 22 0 0 0 Re Re 
0 0 0 0 0 
0 0 0 iTRe 22 

(io) 

(ii) 

0 

0 

0 

i7 
Re 
1 

0 
(12) 

with 22 = ~ +  iaRe ( U - ~ ) .  

The eigenvalue problem posed by differential 

Eq. ( l l )  with the boundary conditions will be 

solved numerically for the eigenvalue and eigen- 

functions u,  v, /~ and ~.  In order to do this we 

need to look at the asymptotic behavior of the 

solutions at the boundaries of our infinite 

domain. 

3. Asymptotic Solutions 

In the numerical solution of eigenvalue prob- 

lems on infinite intervals, a common method of 

proceeding is to replace the infinite interval by the 

appropriate finite interval. To get the asymptotic 

solutions, we solve the governing Eq. (11) in 

their limiting forms when 72--, _+~ where the 

mean velocity and its derivatives are equal to 

zero. The solution of the system which is now one 

of ordinary differential equation with constant 

coefficients is straight forward and the details can 

be found in Mack (1984). 

At 72 --* --co the asymptotic solution is 

o r  

D~ 

\ D ~ /  

t ia 

ia 
1 

= C1 _ i a ( ~ = _ f l / a )  

i7 

iy 

g.2 
g- 

I 
czx~ I H- C3 

X 

l e a~ + 

0 
0 
ff 

V~ V~ V~ V~ 

G 

(13) 

(14) 

and at 72 ~ co the asymptotic solution is 

D~ ia 
1 

=D~ i a ( U - ~ - d / a )  e ~'+ 

i7 

_Z~_ 

C - ix~ 

D2 



+D3 

or  

/x  

0 e ~ 
0 

(15) 

V~ V~ V2~ V~ (16) 

where x = ~ + i a R e ( U + = - ~ / a ) ,  V2~ is the 

inviscid solution, and V~z, V~~ are the primary 

and secondary viscous solutions respectively. The 

coefficients Ca, C2, C3, D~,/)3 and/)3  are complex 
constants to be determined. These asymptotic 

solutions will be used as initial conditions to 

solve the system of Eq. (11). 

4. Numer ica l  Methods  

The numerical method used for the eigenvalue 

problem in hand is a classical shooting method. 

We have used several techniques to resolve the 

serious numerical complications introduced by 

the infinite domain and parasitic contamination 

of the solution. The general process requires that 

the appropriate system of Eq. (11) is integrated 

from - r /_=  to 0 and from rj= to 0, and the two 

computed solutions are matched at a matching 

point as shown in Fig. 2.Matching can be 

achieved only for the correct value of a and thus 

the matching condition becomes the dispersion 

relation which is solved iteratively by a numerical 

root finding method. 

V ~ V ~  ~ 
+1 +2 +3 I]oo 

V V V 
+1 § +3 

11=0 
V.I V.2 V.3 

0 v? v. ~ - . .  

Fig. 2 A diagram for two-directional integration 
method at a matching point 
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A Runge-Kut ta -Fehlherg  method is used to 

integrate the ordinary differential equations. This 

scheme controls the step size by keeping an esti- 

mate of the local error below the user specified 

tolerance (in this study 1 • 10-~ The estimate of 

local error is obtained by comparing the two 

values evaluated by a fourth-order method and 

fifth-order method. 

For correct eigenvalue, the general solution at 

the matching point (;7~,=0) must satisfy 

V_ (~.,) = C ,  V_~ (~,~) + C2 V-2(~m) 

-~- C3 V_3 (7]m) 

: ~r (7ira) = D 1  g+ l  (;Tm) -l-D2 V+2 

(~m) + D3 V+3(~m) (17) 

Rewriting Eq. (17) in matrix form, we have 

/c 

\L 
18) 

This matching condition is satisfied if the determi- 

nant of matrix G is equal to zero; 

A(a,~,  y, Re)=-det G = 0  (19) 
This constitutes the dispersion relation and the 

eigenvalue is calculated from it using the iterative 

technique. 

The following iterative technique is used to 

find the eigenvalue. The numerical integrations 

are carried out once with an initial estimated 

value el, and a second time with a value, az, 
which is obtained by slightly changing at. If all or 

A2 is not less than a prescribed tolerance (e.g. 1 • 

10-~ the Lagrange interpolation scheme is used 

in order to find a new estimate an+l; 

i= lLJ=l , i= j  A J i - -  /.dj J 

The simple and mathematically exact superposi- 

tion method does not work when Reynolds num- 

ber is large (larger than 90 in this study). The 

matrix G in Eq. (18) will poorly conditioned at 

the matching point and consequently the conver- 

gence criteria will never be met within a desired 

accuracy. In other words, if Reynolds number is 
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higher, the three independent solutions will lose 

their linear independence because of contaminat- 

ing error particularly in the viscous region of the 

mixing layer. Therefore, the eigenvalue and eigen- 

functions obtained by the simple superposition 

method will not be accurate at all. An orthonor- 

malization method is used in order to keep the 

independence of these sets of solutions. 

The orthonormalization method was developed 

by Conte (1966) and Davey (1973). To briefly 

explain the orthonormalization method, first 

apply the Gram-Schmidt recursion formulas for 

orthonormalizing a set of vectors [ V-~, Vz, V-3, 

V1, V2, V3] as [U1, U2, U3, U4, Us, U6]; 

vl=  
k-1 

uh=v~-x[(v~, u , ) u /  

(ll(vh, u , )u ,  II)] k : 2 , . . . , 6  
This method has been successfully applied by 

Morris (1976), Lee (1988) and Seo (1995). 

5. Numerical  Results  and Discussion 

The computed three-dimensional spatial ampli- 

fication rates for hyperbolic tangent profile with 

0.1 

• 
0.0 

2 

--0.1 

-0.2 

Three-Dimensional Developing Plane Mixing Layer 

velocity ratio R=0.31 are plotted versus non- 

dimensional frequency in Fig. 3 for several values 

of the spanwise wave numbers for Reynolds 

number equal to 1,000.The hyperbolic tangent 

profile is defined as U : l - R t a n h ( ~ 7 ) .  As long 

as the amplification rate -- al is positive, the large- 

scale disturbances are amplified. When a~ 

becomes zero, the disturbance is neither amplified 

nor damped and is neutrally stable. For higher 

frequencies beyond the neutral value the shear 

layer becomes stable in Fig. 3 and the disturbance 

is damped. From Fig. 3 we see that the neutral 

stability point moves to lower frequencies as the 

spanwise wave number increased because the 

smaller scales are more dissipative. 

The calculated maximum amplification rates 

-alm~x are shown in Fig. 4 as a function of 

Reynolds number for various spanwise wave 

number 7". As Reynolds number increased, the 

maximum growth rate increases monotonically 

and asymptotically by approaching the inviscid 

limit. The growth rate is of course always the 

largest in the two-dimensional case (7"----0) which 

is the lower limit of 7". For any given spanwise 

wave number, there is a critical Reynolds number 

below which the three-dimensional disturbance is 

I I 

...... : 7=0.5 

-0.3 I 1 
o.o 0.5 1 .o .5 

Frequency 

Fig. 3 Amplification rates - a i  versus nondimensional frequency /5' with various spanwise wave number 7 
and R e :  1,000 
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Fig. 4 The maximum amplification rates - a ,  max versus Reynolds number for various spanwise wave number 7 

damped for all frequencies. As it can be deduced 

from Fig. 4, the critical Reynolds number 

increases with increasing 7. For values of 

spanwise wave number 7 larger than approxi- 

mately 0.5, this critical Reynolds number 

increases considerably�9 For instance, the critical 

Reynolds number for 7=0.8 is approximately 

350. For two-dimensional case, we: have calcu- 

lated the critical Reynolds number to be approxi- 

mately 12.5 as shown in Fig. 5 where the neutral 

stability curve is shown in frequency versus 

Reynolds number space, Below this value, all 
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The maximum amplification rates --a~max versus spanwise wave number 7 for several Reynolds numbers 

disturbances are damped.  In region I the two-  

d imensional  dis turbance is unstable and stable in 

region II �9 Of  course, it is well known that at very 

low Reynolds  numbers the paral lel  mean flow 

assumption may not be exactly valid and there- 

fore the critical Reynolds  number  calculated here 

may not be exactly correct. 

The var ia t ion of  the maximum amplif icat ion 

rate with spanwise wave number  y for several 

Reynolds  numbers is shown in Fig. 6. The  maxi- 

mum amplif icat ion rate increases when spanwise 

wave number  7 decreases. The  decrease of  -- ceimax 
with 7 at a fixed Reynolds  number  is quite l inear 

with the exception of  low spanwise wave number  
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Fig. 7 Phase velocity for various spanwise wave numbers. 

(7<__0.2). This is in good agreement with the 

inviscid results of Michalke (1969). Three 

-dimensional wave modes of long wavelength are 

more likely to occur in a shear layer if their 

amplification rates can be boosted through com- 

bined forcing and interaction with other modes. It 

is understood that the amplification rate shown 

here result from interaction with the mean flow 

alone. 

The phase velocities as a function of/3' and V 

for the three-dimensional mode are shown in Fig. 

7. The phase velocity gradually approaches the 

inviscid solution as 7 decreases. According to the 

resu]t, the phase velocity decreases with frequency 

at low frequencies and increases at high fre- 

quencies. 

the spanwise wave number. The computed results 

are summarized as follows; 

(1) The growth rate for 7#=0 are always smal- 

ler than for 7 = 0  and the three-dimensional 

disturbances are less unstable than two-dimen- 

sional disturbances. 

(2) The neutral stability occurs at higher fre- 

quencies, as spanwise wave number decreases. 

(3) As Reynolds number increased, the maxi- 

mum growth rate increases monotonically and 

asymptotically approaching the inviscid limit. 

(4) The decrease of --az,,~ with 9" at a fixed 

Reynolds number is quite linear with the excep- 

tion of low spanwise wave number (7<0.2) .  

R e f e r e n c e s  

6. C o n c l u s i o n s  

In this work, the viscous linear stability of the 

three-dimensional, homogeneous shear layer is 

analyzed. The mean flow profile is prescribed by 

the hyperbolic tangent profile. The unstable mode 

characteristics are interpreted in terms of two 

independent parameters: Reynolds number and 
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